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Reidemeister Moves

Reidemeister’s Theorem: Let Dy and D, be diagrams of the
same knot. Then Dy and D are related by a sequence of the
three Reidemeister moves below.
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What is a knot invariant?

A knot invariant is a property of knots which is the same for
equivalent knots. This can be used to distinguish knots.
Examples:

@ Tricolorability

© Unknotting number
© Crossing number

@ Jones polynomial “z[tylf
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Definition: Kauffman Bracket

The Kauffman bracket is characterized by three rules:
Q@ (O)=1

Q@ (DUO ) =(-A2-A)(D)

Q (A=A +A T (X)

where D is a link diagram.



Definition: Kauffman Bracket

The Kauffman bracket is characterized by three rules: (D) =3
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Definition: Jones Polynomial

Let D be a link diagram of the link L. Then the Jones
Polynomial V(L) of L is given by

V(L) = ((—A)*3W(D)<D>> €z [r
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Note: Links with an odd number of components have Jones
polynomials with only integer powers of t.
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Diagram States

Given a link diagram D with n crossings, a state s of D is a map
s:{1,2,...,n} —» {£1},

sD is a diagram which smooths each crossing of D as
described below

|sD| is the number of components in sD.



Alternate Definition: Jones Polynomial

Let D be a link diagram of the link L. Then the Jones
Polynomial V(L) of L is given by

V(L) = . Z (AZ' 1 ’\ _ A2‘}|sD\——1)

states
sof D H/2=A-2



Computing the Jones Polynomial: Trefoil
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Diagram States Using Graphs

Given any link diagram D, we can checkerboard color the
regions of D and construct a graph I where the vertices are the
black region of D and the edges are the crossings of D

between black regions.
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Then given a state s of D, we can represent sD by I where we
delete edges corresponding to smoothings that separate the

black regions. @ é,



Computing the Jones Polynomial: Trefoil

P z
[T w0

V(C())>=(((—A)‘3'3( A CAK)HA CAR)+ A CA-A) AT CA™A)
A AR ARV A R A ARY) Jg V= g2



Example: Turn That Cube Around
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Computing the Jones Polynomial: Figure Eight




Example: Turn That Hypercube Around
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Example: Turn That Hypercube Around
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Khovanov Homology

The hypercube of states is useful for defining Khovanov
homology, which is a categorification of the Jones polynomial
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We Still Don’t Understand the Jones Polynomial

Open Questions:
@ Does there exist a nontrivial knot K such that V(K) = 1?
© What is a characterization of Jones polynomials?
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