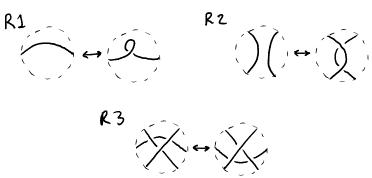
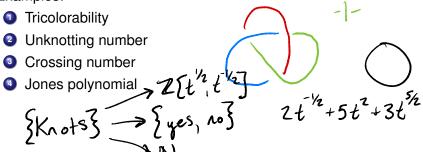

Using Graphs to Think About the Jones Polynomial

Ana Wright


April 5, 2021

What is a knot?


Reidemeister Moves

Reidemeister's Theorem: Let D_1 and D_2 be diagrams of the same knot. Then D_1 and D_2 are related by a sequence of the three Reidemeister moves below.

What is a knot invariant?

A knot invariant is a property of knots which is the same for equivalent knots. This can be used to distinguish knots. Examples:

Definition: Kauffman Bracket

The Kauffman bracket is characterized by three rules:

- \bigcirc $\langle \bigcirc \rangle = 1$
- 3 $\langle X \rangle = A \langle () () + A^{-1} \langle X \rangle$

where D is a link diagram.

Definition: Kauffman Bracket

The Kauffman bracket is characterized by three rules: $\omega(D) = 3$

$$\bigcirc$$
 $\langle \bigcirc \rangle = 1$

$$\langle D \sqcup O \rangle = (-A^{-2} - A^2) \langle D \rangle$$

$$\langle \times \rangle = A \langle () () + A^{-1} \langle \times \rangle$$

where D is a link diagram.

$$= A \Big(A \Big(A \Big(A^{2} - A^{2} \Big) + A^{-1} \Big) + A^{-1} \Big(A + A^{-1} \Big(-A^{2} - A^{2} \Big) \Big) \Big) + A^{-1} \Big(A \Big(A + A^{-1} \Big(-A^{2} - A^{2} \Big) + A^{-1} \Big(A \Big(-A^{2} - A^{2} \Big) + A^{-1} \Big(-A^{2} - A^{2} \Big) + A^$$

Definition: Jones Polynomial

Let D be a link diagram of the link L. Then the Jones Polynomial V(L) of L is given by

$$V(L) = \left((-A)^{-3w(D)} \langle D \rangle \right)_{t^{1/2} = A^{-2}} \in \mathbb{Z} \left[t^{-\frac{1}{2}}, t^{\frac{1}{2}} \right]$$

$$V(\mathcal{A}) = \left((-A)^{-3 \cdot 3} \left(-A^{5} - A^{-3} + A^{-7} \right) \right)_{t^{1/2} = A^{-2}}$$

$$= \left(A^{-4} + A^{-12} - A^{-16} \right)_{t^{1/2} = A^{-2}}$$

$$= \left((A^{-2})^{2} + (A^{-2})^{6} - (A^{-2})^{8} \right)_{t^{1/2} = A^{-2}} = \left(t + t^{\frac{3}{2}} - t^{\frac{4}{2}} \right)$$

Note: Links with an odd number of components have Jones polynomials with only integer powers of t.

Diagram States

Given a link diagram D with n crossings, a state s of D is a map $s: \{1, 2, ..., n\} \rightarrow \{\pm 1\}$,

sD is a diagram which smooths each crossing of D as described below

$$\int_{i}^{i} \frac{i \int_{s(i)=1}^{s(i)=1}}{i} \int_{i}^{i} \frac{i \int_{s(i)=-1}^{s(i)=-1}}{i}$$

|sD| is the number of components in sD.

Alternate Definition: Jones Polynomial

Let D be a link diagram of the link L. Then the Jones Polynomial V(L) of L is given by

$$V(L) = \left((-A)^{-3w(D)} \sum_{\substack{\text{states} \\ s \text{ of } D}} \left(A^{\sum_{i=1}^{n} s(i)} (-A^{-2} - A^{2})^{|sD|-1} \right) \right)_{t^{1/2} = A^{-2}}$$

Computing the Jones Polynomial: Trefoil

$$V(L) = ((-A)^{-3\omega(0)} \underset{s}{\underset{\sum} \left(A^{\frac{2}{|s|}} s(i) \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2} \right)^{|sD|-1} \right)}} \underset{t_{1}, t_{1}, t_{1}}{\underbrace{ \left(-A^{-2} - A^{2}$$

$$V(Q) = \left((-A)^{-3\cdot3} \left(A^{\frac{3}{2}} (-A^{-2} - A^{2})^{\frac{1}{2}} + A^{\frac{1}{2}} (-A^{-2} - A^{2})^{\frac{1}{2}} \right) \right) t^{\frac{1}{2}}$$

Diagram States Using Graphs

Given any link diagram D, we can checkerboard color the regions of D and construct a graph Γ where the vertices are the black region of D and the edges are the crossings of D between black regions.

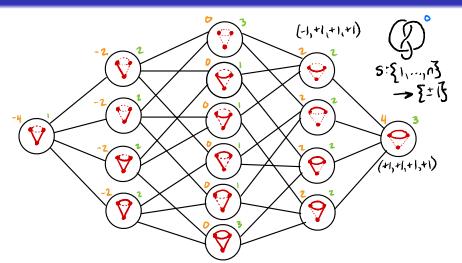
Then given a state s of D, we can represent sD by Γ where we delete edges corresponding to smoothings that separate the black regions.

Computing the Jones Polynomial: Trefoil

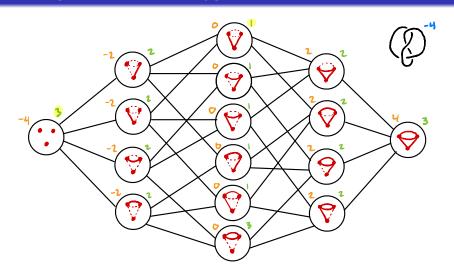
$$V(L) = ((-A)^{-3\omega(0)} \sum_{s} (A^{\frac{2}{2}s(1)} (-A^{-2} - A^{2})^{|sD|-1}))_{t}^{y_{2}} = A^{-2} \in \mathbb{Z}[t^{-1/2}, t^{y_{2}}]$$

$$\frac{1}{2} \sum_{-1,-1,-1}^{-1} \frac{1}{2} \sum_{-1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,-1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,-1,+1}^{-1} \frac{1}{2} \sum_{+1,-1,+1}^{-1} \frac{1}{2} \sum_{+1,-1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}{2} \sum_{+1,+1,+1}^{-1} \frac{1}$$

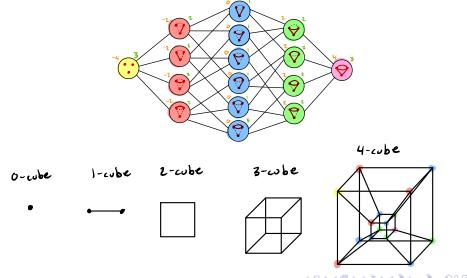
$$V(Q) = \left((-A)^{-3\cdot3} \left(A^{3} (-A^{-2} - A^{2})^{\frac{1}{2}} + A^{\frac{1}{2}} (-A^{-2} - A^{2})^{\frac{1}{2}} \right) \right)$$



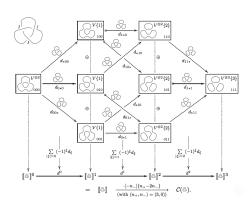
Example: Turn That Cube Around


$$V(L) = ((-A)^{-3\omega(0)} \underset{s}{\geq} (A^{\frac{2}{2}}_{l,-1,-1}^{s(1)} (-A^{-2} - A^{2})^{|sD|-1}))_{t^{1/2} = A^{-2}} \in \mathbb{Z}[t^{-1/2}, t^{1/2}]$$

$$V(Q) = \left((-A)^{-3 \cdot 1} \left(A^{3} (-A^{-2} - A^{2})^{1} + A^{1} (-A^{-2} - A^{2})^{2} + A^{1} (-A^{-2} - A^{2})^{3} + A^{1} (-A^{-2} - A^{2})^{2} \right) + A^{-1} (-A^{-2} - A^{2})^{1} \right)$$


Computing the Jones Polynomial: Figure Eight Knot

Example: Turn That Hypercube Around



Example: Turn That Hypercube Around

Khovanov Homology

The hypercube of states is useful for defining Khovanov homology, which is a categorification of the Jones polynomial

We Still Don't Understand the Jones Polynomial

Open Questions:

- **1** Does there exist a nontrivial knot K such that V(K) = 1?
- What is a characterization of Jones polynomials?

References

On Khovanov's categorification of the Jones polynomial (2002)

Raymond Lickorish

An Introduction to Knot Theory (1997)